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According to the Quantum de Finetti Theorem, locally normal infinite particle
states with Bose–Einstein symmetry can be represented as mixtures of infinite
tensor powers of vector states. This note presents examples of infinite-particle
states with Bose–Einstein symmetry that arise as limits of Gibbs ensembles on
finite dimensional spaces, and displays their de Finetti representations. We con-
sider Gibbs ensembles for systems of bosons in a finite dimensional setting and
discover limits as the number of particles tends to infinity, provided the temper-
ature is scaled in proportion to particle number.
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statistics; mean field equilibrium states; locally normal symmetric states.

1. INTRODUCTION

According to the Quantum de Finetti Theorem,(2) locally normal infinite-
particle states with Bose–Einstein symmetry can be represented as mix-
tures of infinite tensor powers of vector states. This note presents examples
of infinite-particle states with Bose–Einstein symmetry that arise as lim-
its of Gibbs ensembles on finite dimensional spaces, and displays their de
Finetti representations.

The central example is as follows. If the single-particle Hilbert space
H is finite dimensional, the projector onto the symmetric subspace of the
n-particle space can be normalized, and this defines the infinite-tempera-
ture ensemble for n bosons with single-particle space H. For each fixed
m ∈ N, the m-particle reduced density operators under the n-boson infi-
nite-temperature ensembles converge, as n tends to infinity, to the density
operator describing the m-particle statistics under a certain bosonic infi-
nite-particle state ω0. The infinite-particle state ω0 has a de Finetti repre-
sentation as a mixture of infinite tensor powers of vector states Pv, where
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v is a unit vector and Pv = |v〉〈v| denotes the projector onto the span of
v. In the de Finetti mixture for ω0, the weight of the tensor power state
Pv

⊗∞ is the probability density for v ∈H ∼=C
d+1 to equal

v(p, θ) = (
eiθ0

√
p0, e

iθ1
√
p1, . . . , e

iθd
√
pd

)
(1)

when p = (p0, p1, . . . , pd) is sampled uniformly from the d-dimensional
simplex �d and the phase angles θi in θ = (θ0, θ1, . . . , θd) are each sam-
pled uniformly from [0,2π), independently of one another and of p. Thus
the infinite-particle state ω0 corresponds to the uniform probability mea-
sure on �d × [0,2π)d+1.

Similar limits are obtained for finite temperature Gibbs ensembles,
provided the temperature is scaled properly. Suppose H is a Hermitian
operator on the single-particle space H ∼= C

d+1 and �n(β) denotes the
Gibbs canonical ensemble for n noninteracting bosons with single-parti-
cle Hamiltonian H at inverse temperature β. Then, as n tends to infin-
ity, the m-particle reduced density operators under �n(β/n) converge to
the m-particle density of a certain bosonic infinite-particle state ωβ . The
infinite-particle state ωβ is an average of states Pv

⊗∞ with respect to the
probability density on �d × [0,2π)d+1 that minimizes the “free energy”

∫

[0,2π)d+1

∫

�d

〈v,Hv〉f (p, θ) dp dθ + 1
β

∫

[0,2π)d+1

∫

�d

f (p, θ) lnf (p, θ) dp dθ,

where v = v(p, θ) is as in (1). We obtain similar results for bosons with
“mean field” interactions, but again we must scale temperature in propor-
tion to the number of particles. This stands in contrast to the analogous
mean field limits for distinguishable particles, which are obtained without
any peculiar scaling of temperature.(1)

The physical relevance of these facts is limited. On the one hand,
they concern limits of canonical ensembles, which are appropriate when
the number of bosons is fixed, and therefore not appropriate for massless
bosons (e.g., photons). On the other hand, massive bosons inhabit infinite
dimensional Hilbert spaces, so to speak, whereas our results concern finite
dimensional Hilbert spaces. However, the sort of ensemble we study are
appropriate for (noninteracting) systems of n material bosons in thermal
equilibrium, in case it is known that every one of these bosons is trapped in
a potential well of depth E. The statistical state of that system would be
a conditional Gibbs ensemble, supported on the finite dimensional Hilbert
space spanned by the symmetrized products of trapped (bound) states.
Only noninteracting systems of trapped bosons are considered, because the
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conditional Gibbs ensemble only makes sense if the Hamistonian of the
system commutes with the observable that every particle is trapped.

Our results are presented in Section 3, after a quick review of the
Quantum de Finetti Theorem in the next section.

2. THE QUANTUM DE FINETTI THEOREM

Let H be Hilbert space (which we will call the single-particle Hilbert
space) and let H⊗n denote the n-fold tensor power of H (the n-parti-
cle Hilbert space). When π denotes a permutation of {1,2, . . . , n}, let Uπ
denote the unitary “permutation” operator on H⊗n defined by

Uπ(x1 ⊗x2 ⊗· · ·⊗xn)=xπ(1)⊗xπ(2)⊗· · ·⊗xπ(n).

For each n∈N let Dn be a density operator on the n-particle Hilbert
space H⊗n, the n-fold tensor power of H. We want the density operators
Dn to be symmetric, and we assume

(A) for all n, the density operator Dn commutes with any permutation
operator Uπ on H⊗n.
We are especially interested here in systems of bosons, for which

(B) for all n, DnUπ =Dn for any permutation operator Uπ on H⊗n.
Condition (B) is stronger than (A). We also want the sequence {Dn} of
density operators to be consistent with respect to “subsampling” in the
sense that

(C) for all m<n, Dn:m=Dm,
where Dn:m denotes the mth partial trace of Dn, i.e., the operator such that

Tr(Dn:mA)=Tr(Dn(A⊗ I n−m times⊗· · ·⊗ I ))

for all A∈B(H⊗m).

The structure of sequences {Dn} of density operators satisfying
(C) and (A) or (B) is given by the quantum analogue of the de Fi-
netti Theorem of probability theory.(2) Let ρ be a density operator on H.
A sequence {Dn} of density operators of the form
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D1 = ρ

D2 = ρ⊗ρ
D3 = ρ⊗ρ⊗ρ, et cetera (2)

always satisfies (A) and (C), but it satisfies (B) and (C) if and only if ρ
is a pure state, i.e., a rank one projector on H. Roughly speaking, any
sequence of density operators satisfying (A) and (C) is uniquely represent-
able as a mixture of sequences of the form (2). That is, if {Dn} satisfies (A)
and (C) then there exists a unique probability measure µ supported on the
single-particle density operators such that

Dn=
∫
ρ⊗nµ(dρ) (3)

for all n. Furthermore, if {Dn} satisfies (B) and (C), then the measure
µ(dρ) in the integral representation (3) is even supported on the set of
vector states ρ=Pψ . This paraphrases the propositions of, (2) ignoring the
technical details; we now restate the results with more care.

For m�n, let jmn denote the *-isomorphic embedding

jmn(B)=B⊗ I⊗n−m (4)

of B(H⊗m) into B(H⊗n). The system of C* algebras B(H⊗n) and isomor-
phic injections jmn has an inductive limit A. The inductive or direct limit
in the category of C* algebras may be constructed as in (ref. 3, Proposi-
tion 11.4.1). The inductive limit A is unique up to isomorphism, and for
each n there is a *-isomorphism in from B(H⊗n) into A such that injmn =
im for all m� n and the union of the images in(B(H⊗n)) is dense in A.
A sequence {Dn} of density operators satisfying the conditions (C) can be
used to define a continuous positive linear functional ω on A by

ω(in(B))=Tr(DnB) ∀B ∈B(H⊗n). (5)

This is well-defined thanks to the consistency conditions (C) and the den-
sity of ∪in(B(H⊗n)) in A. In particular, ω(e)= 1, where e is the identity
element of the C* algebra A. If {Dn} satisfies (A) as well as (C) then ω is
symmetric in the sense that

ω(in(UπBU
∗
π ))=ω(in(B)) (6)
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for all n, all B ∈ B(H⊗n), and all π ∈ 	n, the set of permutations of
{1,2, . . . , n}. The set of all “symmetric states” on A, i.e., the set

S =
{
ω∈A∗

∣∣
∣ ω(e)=1 and ω(x∗x)�0 ∀x ∈A and ω satisfies (6)

}
,

is a convex subset of the Banach dual A∗ of A, and it is compact with
respect to the weak* topology. Let S1 denote the space of single-particle
states, i.e., the set

S1 =
{
ρ ∈B(H)∗

∣
∣
∣ ρ(I)=1 and ω(A∗A)�0 ∀A∈B(H)

}

endowed with the relative weak* topology it inherits a subset of the
Banach dual B(H)∗ of B(H). It was first shown in ref. 4 that each ω∈S
has a unique representation as an integral of product states

ω=
∫

S1

ρ⊗ρ⊗ρ⊗· · · · · · µ(dρ) =
∫

S1

ρ⊗∞µ(dρ), (7)

where µ is a probability measure on the σ -algebra F1 generated by the
intersections with S1 of weak* open sets in B(H)∗. We sketch a proof of
this, following ref. 2: First, the extreme points of S are identified as the
product states ρ⊗∞. Thus, the set of extreme points is the image of the
compact space S1 under the continuous injection ρ �−→ ρ⊗∞, and it fol-
lows that the extreme set is closed in S. The existence of an integral rep-
resentation (7) is then a consequence of the Krein–Milman theorem, and
its uniqueness is shown in ref. 2 by a direct argument.

It is further shown in ref. 2 that the measure µ(dρ) appearing in the
integral representation (7) of ω is supported on the measurable subset of
normal states on B(H) if ω is determined, as in formula (5) above, by
sequences of density operators satisfying (A) and (C). If, in addition, the
sequence of density operators defining ω satisfies (B), then the measure
µ(dρ) is even supported on the vector states ρ(A)=〈ψ,Aψ〉 with ‖ψ‖=1.

3. EXAMPLES OF BOSONIC DE FINETTI STATES

In this section we exhibit some sequences {Dn} satisfying (B) and (C)
that are obtained from natural statistical ensembles. In all of these exam-
ples, the single-particle Hilbert space H is finite dimensional. After intro-
ducing the notation, we will state all of our results before proceeding to
their proofs.
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Let H=C
d+1 and let H(n) denote the subspace of symmetric vectors

in H⊗n. Let �n denote the symmetrizing projector

�n= 1
n!

∑

π∈	n
Uπ (8)

from H⊗n onto H(n). We now introduce notation for the occupation num-
ber basis of H(n) relative to a fixed orthonormal (ordered) basis {ej } of H.
Let n = (n0, n1, . . . , nd) be an ordered d + 1-tuple of nonnegative integers
(occupation numbers) and let #n denote

∑
nj . We use the notation

(
n

n

)
=n!

/ d∏

i=0

ni !

for multinomial coefficients. The vector

�n =
√(

n

n

)
�n(e

⊗n0
0 ⊗ e⊗n1

1 ⊗· · ·⊗ e⊗ndd )

is a unit vector in H(n), and the set of vectors {�n | #n =n} is an ortho-
normal basis of H(n). Let Pn denote the rank-one projector onto the span
of �n:

Pn
=〈�n,
〉�n. (9)

We begin by considering the “uniformly mixed” density operators
supported on H(n):

Proposition 1. Let �n denote the symmetrizing projector (8). For
each m,

Sm≡ lim
n→∞

1
Tr�n

�n:m=
∑

m:#m=m

{(
m

m

)∫

�d

d∏

i=0

p
mi
i λd(dp)

}
Pm, (10)

where λd(dp) denotes normalized Lebesgue measure on the d-dimensional
simplex

�d =
{
p= (p0, p1, . . . , pd)∈R

d+1 ∣∣ 0�pi ∀i and
d∑

i=0

pi =1
}
.
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The sequence {Sm} satisfies (B) and (C) of Section 2. By the Quantum
de Finetti Theorem, there exists a measure µ supported on the pure states
on C

d+1 such that

Sm=
∫
P⊗mµ(dP )

for all m∈N. This measure can be described as follows. Define the map

v :�d × [0,2π)d+1 −→C
d+1

by

v(p0, p1, . . . , pd, θ0, θ1, . . . , θd)=
d∑

j=0

eiθj
√
pj ej (11)

where {ei} is the standard basis of C
d+1. The map v is many-one onto

the set of unit vectors in C
d+1. The probability measure µ(dP ) is the one

induced via v from the uniform measure

λ(dp)σ(dθ)≡λ(dp) dθ0

2π
dθ1

2π
· · · dθd

2π

on �d × [0,2π)d+1. In other words,

Proposition 2. The density operator (10) equals

∫

�d

∫

[0,2π)d+1

(
Pv(p,θ)

m times⊗· · ·⊗Pv(p,θ)
)
σ(dθ)λd(dp). (12)

Next we consider Gibbs ensembles for noninteracting systems of bo-
sons. Let

Hn=
n∑

i=1

Ti (13)

be the Hamiltonian for n noninteracting bosons with single-particle space
H = C

d+1. Let {ej } be an orthonormal basis of H consisting of eigen-
vectors of the single-particle operator T , so that T ej = εj ej . The Gibbs
density operator for the n boson system is
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�n(β)= 1
Zn,β

∑

n:#n=n

d∏

i=0

e−βniεi Pn with Zn,β =
∑

n:#n=n

d∏

i=0

e−βniεi .

(14)

An interesting limit is attained if temperature is scaled in proportion to n
as n−→ ∞. If the temperature is not scaled as n −→ ∞ then a sort of
Bose–Einstein condensation is attained in the limit.

Proposition 3. Let Hn be the noninteracting Hamiltonian (13) and
let �n(β) denote the Gibbs density (14). Let {ej } be an orthonormal basis
of H consisting of eigenvectors of the single-particle operator T , so that
T ej = εj ej .

(i) For each m∈N, the limit lim
n→∞�n:m(β/n) exists and equals

∑

m:#m=m

{(
m

m

)∫

�d

d∏

i=0

p
mi
i Z

−1
β

d∏

i=0

e−βεipi λd(dp)
}
Pm

with Z−1
β = ∫

�d

∏d
i=0 exp(−βεipi)λd(dp).

(ii) If ε0<ε1 � · · ·� εd , then for each m∈N,

lim
n→∞�n:m(β)=P(m,0,... ,0)=Pe0

⊗m.

Finally, we consider systems with two-particle interactions in the
“mean field” scaling. Let V be a Hamiltonian operator on H ⊗ H such
that V (x⊗y)=V (y⊗x) for all x, y∈H. For n>2, define the Hamiltonian

Hn=
n∑

i=1

Ti + 1
n−1

∑

1�i<j�n
Vij , (15)

where Vij denotes the operator obtained by applying V to the ith and j th

factors of H⊗n. For any n∈N and any β ∈R, the n-particle Gibbs density
at inverse temperature β for the Hamiltonian (15) is

�n(β)= 1
Tr(e−βHn�n)

e−βHn�n. (16)

Proposition 4. Let �n(β) denote the Gibbs density (16). For each
m, the limit
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Gm= lim
n→∞

{
�n(β/n)

}
:m

exists and defines a density operator on (Cd+1)⊗n. The de Finetti repre-
sentation of Gm is

1
Zβ

∫

�d

∫

[0,2π)d+1

m times
Pv ⊗· · ·⊗Pv e

−β{Tr(T Pv)+Tr(V (Pv⊗Pv))/2}σ(dθ)λd(dp)

with v =v(p, θ) as in (11) and

Zβ =
∫

�d

∫

[0,2π)d+1
e−β{Tr(T Pv)+Tr(V (Pv⊗Pv))/2}σ(dθ)λd(dp).

The rest of this section is devoted to proving the above propositions.
Recall the definition (9) of the projectors Pn. For each n∈ N, let ρn

be an n-particle density

ρn=
∑

n:#n=n
wn(n)Pn ,

where wn is a probability measure on the set {n|#n =n}. Each probability
measure wn can be associated with the discrete probability measure

ωn=
∑

n:#n=n
wn(n)δ

(
p− 1

n
n
)

on the d-dimensional simplex �d . It may be verified that

Pn:m=
(
n

m

)−1 ∑

m:#m=m

d∏

i=0

(
ni

mi

)
Pm

(this equals 0 if any mi >ni for any i), and therefore

ρn:m =
(
n

m

)−1 ∑

m:#m=m

[ ∑

n:#n=n
wn(n)

d∏

i=0

(
ni

mi

)]
Pm

=
∑

m:#m=m

(
m

m

)[ ∑

n:#n=n
wn(n)

∏d
i=0

ni
n
(
ni
n

− 1
n
) · · · ( ni

n
− mi−1

n
)

1(1− 1
n
)(1− 2

n
) · · · (1− m−1

n
)

]
Pm.

(17)
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The coefficient of Pm in (17) may be written

(
m

m

)∫

�d

fn(p)ωn(dp),

where

fn(p)= ll{pi>(mi−1)/n ∀i}(p)
∏d
i=0 pi(pi − 1

n
) · · · (pi − mi−1

n
)

1(1− 1
n
)(1− 2

n
) · · · (1− m−1

n
)
.

The functions fn(p) converge uniformly to
∏d
i=0 p

mi
i on �d . Therefore, if

ωn converges weakly to some probability measure ω(dp) on �d , then

lim
n→∞ρn:m=

∑

m:#m=m

(
m

m

)∫

�d

d∏

i=0

p
mi
i ω(dp) Pm. (18)

The probability measures on �d corresponding to the Gibbs density oper-
ators (14) for noninteracting bosons are

ωn=Z−1
n,β

∑

n:#n=n

d∏

i=0

e−βniεi δ(p− 1
n

n) . (19)

If all of the eigenvalues of T are equal, then the measures (19) con-
verge weakly to λd(dp), the uniform probability measure on the simplex,
but if ε0 is strictly smaller than all of the other eigenvalues of T , then
the measures (19) converge weakly to δ(p− (1,0, . . . ,0)), a point-mass at
the lowest energy vertex of the simplex. This convergence implies Propo-
sitions 1 and assertion (ii) of Proposition 3 by formula (18). On the other
hand, the probability measures corresponding to the Gibbs density opera-
tors �n(β/n) for noninteracting bosons are

ωn=Z−1
n,β

∑

n:#n=n

d∏

i=0

e−βεini/nδ(p− 1
n

n) ,

and these converge weakly to

Z−1
β

d∏

i=0

e−βεipi λd(dp)
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with Zβ=
∫
�d

∏d
i=0 exp(−βεipi)λd(dp). This proves assertion (i) of Propo-

sition 3.
To prove Proposition 2, we will show that (10) and (12) are equal.

Define the rank-one operators Qjk(x)=〈ek, x〉ej . From (11),

Pv(p,θ)=
d∑

j,k=0

ei(θj−θk)√pjpk Qjk

and therefore Pv(p,θ)
⊗m equals

d∑

j1,... ,jm=0

d∑

k1,... ,km=0

d∏

r=0

√
pjr pkr e

i(θjr−θkr ) Qj1k1 ⊗Qj2k2 ⊗· · ·⊗Qjmkm.

(20)

For i=0,1, . . . , d, let Ni : {0,1, . . . , d}m−→N be defined by

Ni(x1, x2, . . . , xm)=#
{
k∈{1,2, . . . ,m} : xk = i}

and define

N(x1, x2, . . . , xm)=
(
N0(x1, x2, . . . , xm), . . . ,Nd(x1, x2, . . . , xm)

)
.

If N(j1, . . . , jm)=N(k1, . . . , km) then

∫

[0,2π)d+1

d∏

r=0

ei(θjr−θkr )σ (dθ)=1,

but otherwise it equals 0. Thus, from (20),

∫

�d

∫

[0,2π)d+1
Pv(p,θ)

⊗mσ(dθ)λd(dp)

=
∑

m:#m=m

∫

�d

m∏

i=0

p
mi
i λd(dp)

∑

j1,... ,jm :
N(j1,... ,jm)=m

∑

k1,... ,km :
N(k1,... ,km)=m

Qj1k1 ⊗· · ·⊗Qjmkm

=
∑

m:#m=m

∫

�d

m∏

i=0

p
mi
i λd(dp)

(
m

m

)
Pm

by the definition (9) of Pm. This proves Proposition 2.
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Finally, we derive Proposition 4 from Proposition 2. Define W=T ⊗ I

+I ⊗T +V . Then the Hamiltonian (15) can be written

Hn= 1
n−1

∑

1�i<j�n
Wij .

We claim that

lim
n→∞

n−j

Tr�n
{(Hn)j�n}:m

=2−j{Wm+1,m+2Wm+3,m+4 · · ·Wm+2j−1,m+2j Sm+2j
}

:m (21)

for each j,m∈N. This is so because (Hn)j contains
(
n
2

)j terms of the form
(n−1)−jWa1b1Wa2b2 , . . . ,Waj bj , and, when n is large, the majority of these
terms are such that the indices a1, b1, . . . , aj , bj are all distinct and greater
than m. The sum of the remaining terms in (Hn)

j is o(nj ) and does not
contribute to the limit (21). By the symmetry of �n,

{
Wa1b1Wa2b2 · · ·Wajbj �n

}
:m = {

Wm+1,m+2 · · ·Wm+2j−1,m+2j�n
}

:m

= {
Wm+1,m+2 · · ·Wm+2j−1,m+2j�n:m+2j

}
:m

if a1, b1, . . . , aj , bj are all distinct and greater than m. There are asymp-
totically n2j /2 such terms, so (21) follows from Proposition 1.

Now, to prove Proposition 4, expand

1
Tr�n

e−βn
−1Hn�n=

∞∑

j=0

1
j !
(−β)jn−j (Hn)j

1
Tr�n

�n

and take the mth partial trace:

1
Tr�n

{
e−βn

−1Hn�n
}

:m=
∞∑

j=0

1
j !
(−β)jn−j

{
(Hn)

j 1
Tr�n

�n

}

:m
. (22)

The j th term of the series in (22) converges to

(−1)j
1
j !

(β
2

)j{
Wm+1,m+2Wm+3,m+4 · · ·Wm+2j−1,m+2j Sm+2j

}
:m
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as n −→ ∞ by (21) and is bounded by 1
j !β

j‖W‖j uniformly in n. Since
the series in (22) are majorized by the convergent series

∑
j

1
j !β

j‖W‖j and
converge term-by-term as n−→∞, it follows that

lim
n→∞

1
Tr�n

{
e−βn

−1Hn�n
}

:m

=
∞∑

j=0

(−1)j
1
j !

(β
2

)j{
Wm+1,m+2 · · ·Wm+2j−1,m+2j Sm+2j

}
:m. (23)

Substituting the integral representations (12) for Sm+2j into (23) yields

lim
n→∞

1
Tr�n

{
e−βn

−1Hn�n
}

:m

=
∞∑

j=0

1
j !

(−β
2

)j ∫

�d

∫

[0,2π)d+1

[
Tr

(
WPv(p,θ)

⊗2)]jPv(p,θ)
⊗mσ(dθ)λd(dp)

=
∫

�d

∫

[0,2π)d+1
e
−β 1

2 Tr(WPv(p,θ)⊗Pv(p,θ))Pv(p,θ)
⊗mσ(dθ)λd(dp) .

Proposition 4 follows from the preceding equation and the definition (16)
of �n(β).
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